(367) Amicitia

Asteroid
(367) Amicitia
Berechnetes 3D-Modell von (367) Amicitia
Berechnetes 3D-Modell von (367) Amicitia
{{{Bild2}}}
{{{Bildtext2}}}
Eigenschaften des Orbits Animation
Epoche: 5. Mai 2025 (JD 2.460.800,5)
Orbittyp Innerer Hauptgürtel
Asteroidenfamilie
Große Halbachse 2,219 AE
Exzentrizität 0,095
Perihel – Aphel 2,008 AE – 2,431 AE
Perihel – Aphel  AE –  AE
Neigung der Bahnebene 2,942°
Länge des aufsteigenden Knotens 83,4°
Argument der Periapsis 55,4°
Zeitpunkt des Periheldurchgangs 23. Oktober 2024
Siderische Umlaufperiode 3 a 112 d
Siderische Umlaufzeit {{{Umlaufdauer}}}
Mittlere Orbital­geschwin­digkeit {{{Umlaufgeschwindigkeit}}} km/s
Mittlere Orbital­geschwin­digkeit 19,95 km/s
Physikalische Eigenschaften
Mittlerer Durchmesser 21,2 km ± 0,6 km
Abmessungen {{{Abmessungen}}}
Masse Vorlage:Infobox Asteroid/Wartung/Masse kg
Albedo 0,39
Mittlere Dichte g/cm³
Rotationsperiode 5 h 3 min
Absolute Helligkeit 10,6 mag
Spektralklasse {{{Spektralklasse}}}
Spektralklasse
(nach Tholen)
Spektralklasse
(nach SMASSII)
Geschichte
Entdecker Auguste Charlois
Datum der Entdeckung 19. Mai 1893
Andere Bezeichnung 1893 KB, 1927 UO, 1957 TM, 1965 GA
Quelle: Wenn nicht einzeln anders angegeben, stammen die Daten vom JPL Small-Body Database. Die Zugehörigkeit zu einer Asteroidenfamilie wird automatisch aus der AstDyS-2 Datenbank ermittelt. Bitte auch den Hinweis zu Asteroidenartikeln beachten.

(367) Amicitia ist ein Asteroid des inneren Hauptgürtels, der am 19. Mai 1893 vom französischen Astronomen Auguste Charlois am Observatoire de Nice bei einer Helligkeit von 12 mag entdeckt wurde.

Der Asteroid ist benannt mit dem lateinischen Begriff für Freundschaft. Julius Bauschinger, der Direktor des Astronomischen Rechen-Instituts in Berlin, veröffentlichte 1901 die Namen von 34 von Charlois entdeckten Asteroiden zwischen den Nummern (356) und (451). Im Text heißt es lediglich: „Nach Zustimmung des Herrn Charlois haben folgende von ihm entdeckten… Planeten nachstehende Namen erhalten.“ Es liegt daher nahe, dass die Namen vom Astronomischen Rechen-Institut ausgewählt wurden.[1]

Wissenschaftliche Auswertung

Aus Ergebnissen der IRAS Minor Planet Survey (IMPS) wurden 1992 Angaben zu Durchmesser und Albedo für zahlreiche Asteroiden abgeleitet, darunter auch (367) Amicitia, für die damals Werte von 19,1 km bzw. 0,25 erhalten wurden.[2] Eine Auswertung von Beobachtungen durch das Projekt NEOWISE im nahen Infrarot führte 2012 zu vorläufigen Werten für den Durchmesser und die Albedo im sichtbaren Bereich von 16,8 oder 21,2 km bzw. 0,39 oder 0,29.[3]

Photometrische Messungen des Asteroiden fanden erstmals statt am 5. und 6. Juni 1992 am Mount-Lemmon-Observatorium in Arizona. Aus der aufgezeichneten Lichtkurve wurde eine Rotationsperiode von 4,209 h abgeleitet, allerdings konnten auch andere Perioden von 3,808, 4,564 oder 5,059 h nicht ausgeschlossen werden.[4]

Eine Auswertung von archivierten Lichtkurven des United States Naval Observatory in Arizona und der Catalina Sky Survey ermöglichte dann 2011 für ein dreidimensionales Gestaltmodell des Asteroiden die Bestimmung von zwei alternativen Positionen der Rotationsachse mit prograder Rotation und einer Periode von 5,05502 h.[5]

Umfangreiche Messungen wurden im Oktober 2000, Juli und September 2003, März und April 2005, von Januar bis März 2008, im Juni 2009 sowie September 2010 am Observatorium Borówiec in Polen, am Observatoire du Pic du Midi in Frankreich, am Nationalen Astronomischen Observatoriums Roschen in Bulgarien und am Observatorium San Pedro de Atacama in Chile durchgeführt. Die während insgesamt 15 Nächten registrierten Lichtkurven wurden in einer Untersuchung von 2012 zu einer Periode von 5,055 h ausgewertet.[6] Aus den Daten des Calvin-Rehoboth Observatory aus drei Beobachtungsreihen vom 18. November 2007 bis 7. April 2008 wurde in einer Untersuchung von 2016 eine Rotationsperiode des Asteroiden von 5,05479 h abgeleitet.[7]

Im Jahr 2021 wurde aus archivierten Daten und photometrischen Messungen von Gaia DR2 erneut eine Rotationsachse mit prograder Rotation berechnet. Die Rotationsperiode wurde dabei zu 5,05502 h bestimmt.[8] Zwischen 2012 und 2018 wurden mit der All-Sky Automated Survey for Supernovae (ASAS-SN) auch photometrische Daten von 20.000 Asteroiden aufgezeichnet. Auf mehr als 5000 davon konnte erfolgreich die Methode der konvexen Inversion angewendet werden, darunter auch (367) Amicitia, für die in einer Untersuchung von 2021 ein verbessertes dreidimensionales Gestaltmodell für zwei alternative Rotationsachsen mit prograder Rotation und einer Periode von 5,05501 h berechnet wurde.[9]

Aus archivierten Daten des Asteroid Terrestrial-impact Last Alert System (ATLAS) aus dem Zeitraum 2015 bis 2018 konnte in einer Untersuchung von 2022 mit der Methode der konvexen Inversion eine Rotationsperiode von 5,05502 h bestimmt werden.[10] Im Jahr 2023 wurde aus photometrischen Messungen von Gaia DR3 erneut ein dreidimensionales Gestaltmodell des Asteroiden für zwei alternative Rotationsachsen mit prograder Rotation und einer Periode von 5,05504 h berechnet.[11]

Siehe auch

Commons: (367) Amicitia – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. J. Bauschinger: Benennung von kleinen Planeten. In: Astronomische Nachrichten. Band 156, Nr. 3735, 1901, Sp. 239–240, doi:10.1002/asna.19011561520 (PDF; 141 kB).
  2. E. F. Tedesco, P. V. Noah, M. Noah, S. D. Price: The Supplemental IRAS Minor Planet Survey. In: The Astronomical Journal. Band 123, Nr. 2, 2002, S. 1056–1085, doi:10.1086/338320 (PDF; 398 kB).
  3. J. R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, C. Nugent, M. S. Cabrera: Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids. In: The Astrophysical Journal Letters. Band 759, Nr. 1, L8, 2012, S. 1–8, doi:10.1088/2041-8205/759/1/L8 (PDF; 3,27 MB).
  4. W. Z. Wisniewski, T. M. Michałowski, A. W. Harris, R. S. McMillan: Photometric Observations of 125 Asteroids. In: Icarus. Band 126, Nr. 2, 1997, S. 395–449, doi:10.1006/icar.1996.5665.
  5. J. Hanuš, J. Ďurech, M. Brož, B. D. Warner, F. Pilcher, R. Stephens, J. Oey, L. Bernasconi, S. Casulli, R. Behrend, D. Polishook, T. Henych, M. Lehký, F. Yoshida, T. Ito: A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method. In: Astronomy & Astrophysics. Band 530, A134, 2011, S. 1–16, doi:10.1051/0004-6361/201116738 (PDF; 1,82 MB).
  6. A. Kryszczyńska, F. Colas, M. Polińska, R. Hirsch, V. Ivanova, G. Apostolovska, B. Bilkina, F. P. Velichko, T. Kwiatkowski, P. Kankiewicz, F. Vachier, V. Umlenski, T. Michałowski, A. Marciniak, A. Maury, K. Kamiński, M. Fagas, W. Dimitrov, W. Borczyk, K. Sobkowiak, J. Lecacheux, R. Behrend, A. Klotz, L. Bernasconi, R. Crippa, F. Manzini, R. Poncy, P. Antonini, D. Oszkiewicz, T. Santana-Ros: Do Slivan states exist in the Flora family? I. Photometric survey of the Flora region. In: Astronomy & Astrophysics. Band 546, A72, 2012, S. 1–51, doi:10.1051/0004-6361/201219199 (PDF; 2,36 MB).
  7. M. J. Dykhuis, L. A. Molnar, C. J. Gates, J. A. Gonzales, J. J. Huffman, A. R. Maat, S. L. Maat, M. I. Marks, A. R. Massey-Plantinga, N. D. McReynolds, J. A. Schut, J. P. Stoep, A. J. Stutzman, B. C. Thomas, G. W. Vander Tuig, J. W. Vriesema, R. Greenberg: Efficient spin sense determination of Flora-region asteroids via the epoch method. In: Icarus. Band 267, 2016, S. 174–203, doi:10.1016/j.icarus.2015.12.021.
  8. J. Martikainen, K. Muinonen, A. Penttilä, A. Cellino, X. Wang: Asteroid absolute magnitudes and phase curve parameters from Gaia photometry. In: Astronomy & Astrophysics. Band 649, A98, 2021, S. 1–8, doi:10.1051/0004-6361/202039796 (PDF; 7,49 MB).
  9. J. Hanuš, O. Pejcha, B. J. Shappee, C. S. Kochanek, K. Z. Stanek, T. W.-S. Holoien: V-band photometry of asteroids from ASAS-SN. Finding asteroids with slow spin. In: Astronomy & Astrophysics. Band 654, A48, 2021, S. 1–11, doi:10.1051/0004-6361/202140759 (PDF; 1,16 MB).
  10. J. Ďurech, M. Vávra, R. Vančo, N. Erasmus: Rotation Periods of Asteroids Determined With Bootstrap Convex Inversion From ATLAS Photometry. In: Frontiers in Astronomy and Space Sciences. Band 9, 2022, S. 1–7, doi:10.3389/fspas.2022.809771 (PDF; 1,01 MB).
  11. J. Ďurech, J. Hanuš: Reconstruction of asteroid spin states from Gaia DR3 photometry. In: Astronomy & Astrophysics. Band 675, A24, 2023, S. 1–13, doi:10.1051/0004-6361/202345889 (PDF; 32,9 MB).