(439) Ohio

Asteroid
(439) Ohio
{{{Bild}}}
{{{Bildtext}}}
{{{Bild2}}}
{{{Bildtext2}}}
Eigenschaften des Orbits Animation
Epoche: 5. Mai 2025 (JD 2.460.800,5)
Orbittyp Äußerer Hauptgürtel
Asteroidenfamilie
Große Halbachse 3,132 AE
Exzentrizität 0,067
Perihel – Aphel 2,922 AE – 3,343 AE
Perihel – Aphel  AE –  AE
Neigung der Bahnebene 19,130°
Länge des aufsteigenden Knotens 201,4°
Argument der Periapsis 245,0°
Zeitpunkt des Periheldurchgangs 7. März 2027
Siderische Umlaufperiode 5 a 199 d
Siderische Umlaufzeit {{{Umlaufdauer}}}
Mittlere Orbital­geschwin­digkeit {{{Umlaufgeschwindigkeit}}} km/s
Mittlere Orbital­geschwin­digkeit 16,81 km/s
Physikalische Eigenschaften
Mittlerer Durchmesser 70,4 km ± 0,3 km
Abmessungen {{{Abmessungen}}}
Masse Vorlage:Infobox Asteroid/Wartung/Masse kg
Albedo 0,03
Mittlere Dichte g/cm³
Rotationsperiode 1 d 13 h
Absolute Helligkeit 9,8 mag
Spektralklasse {{{Spektralklasse}}}
Spektralklasse
(nach Tholen)
X:
Spektralklasse
(nach SMASSII)
Geschichte
Entdecker E. F. Coddington
Datum der Entdeckung 13. Oktober 1898
Andere Bezeichnung 1898 TA, 1934 CO1, 1936 QP1
Quelle: Wenn nicht einzeln anders angegeben, stammen die Daten vom JPL Small-Body Database. Die Zugehörigkeit zu einer Asteroidenfamilie wird automatisch aus der AstDyS-2 Datenbank ermittelt. Bitte auch den Hinweis zu Asteroidenartikeln beachten.

(439) Ohio ist ein Asteroid des äußeren Hauptgürtels, der am 13. Oktober 1898 vom US-amerikanischen Astronomen Edwin Foster Coddington am Lick-Observatorium in Kalifornien bei einer Helligkeit von 11,5 mag entdeckt wurde. Es war seine erste von drei Asteroidenentdeckungen.

Der Asteroid ist benannt nach dem Staat Ohio im Osten der zentralen USA und dem gleichnamigen Ohio River, der vom Zusammenfluss der Flüsse Allegheny und Monongahela in den Mississippi fließt.

Wissenschaftliche Auswertung

Aus Ergebnissen der IRAS Minor Planet Survey (IMPS) wurden 1992 Angaben zu Durchmesser und Albedo für zahlreiche Asteroiden abgeleitet, darunter auch (439) Ohio, für den damals Werte von 76,6 km bzw. 0,04 erhalten wurden.[1] Eine Auswertung von Beobachtungen durch das Projekt NEOWISE im nahen Infrarot führte 2011 zu vorläufigen Werten für den Durchmesser und die Albedo im sichtbaren Bereich von 75,6 km bzw. 0,04.[2] Nachdem die Werte nach neuen Messungen mit NEOWISE 2012 auf 86,9 km bzw. 0,03 geändert worden waren,[3] wurden sie 2014 auf 70,4 km bzw. 0,04 korrigiert.[4] Nach der Reaktivierung von NEOWISE im Jahr 2013 und Registrierung neuer Daten wurden die Werte 2015 zunächst mit 76,2 oder 78,0 km bzw. 0,04 oder 0,03 angegeben[5] und dann 2016 korrigiert zu 73,9 km bzw. 0,04, diese Angaben beinhalten aber alle hohe Unsicherheiten.[6]

Eine spektroskopische Untersuchung von 820 Asteroiden zwischen November 1996 und September 2001 am La-Silla-Observatorium in Chile ergab für (439) Ohio eine taxonomische Klassifizierung als T-Typ.[7]

Photometrische Messungen des Asteroiden fanden erstmals statt vom 2. bis 5. März 1984 am La-Silla-Observatorium. Aus der aufgezeichneten Lichtkurve wurde eine Rotationsperiode von entweder 38,4 oder 19,2 h abgeleitet.[8] Aus archivierten Lichtkurven und neuen photometrischen Messungen aus dem Zeitraum August bis November 2014 an verschiedenen Sternwarten, wie dem Observatorium Borówiec in Polen, dem Observatori Astronòmic del Montsec (OAdM) in Katalonien und dem Winer Observatory in Arizona, wurde in einer Untersuchung von 2015 eine Periode von 37,46 h bestimmt. Die halb so lange Periode konnte sicher ausgeschlossen werden. (439) Ohio zählt damit zu den langsamen Rotatoren.[9]

Aus einer Kombination von photometrischen Daten der Lowell Observatory Database mit thermischen Infrarot-Messungen von NEOWISE konnte in einer Untersuchung von 2018 erstmals ein dreidimensionales Gestaltmodell des Asteroiden für zwei alternative Rotationsachsen mit retrograder Rotation und einer Periode von 37,4675 h berechnet werden.[10] Im Jahr 2021 wurde aus archivierten Daten und photometrischen Messungen von Gaia DR2 wieder ein dreidimensionales Gestaltmodell des Asteroiden für eine Rotationsachse mit retrograder Rotation und einer Periode von 37,4663 h bestimmt.[11]

Aus terrestrischen Beobachtungsdaten vom 22. August bis 21. November 2014 des Astronomischen Observatoriums der Adam-Mickiewicz-Universität Posen in Polen in Verbindung mit weiteren Daten der Raumsonde Gaia aus dem Zeitraum November 2014 bis Februar 2015 konnte in einer Untersuchung von 2022 für (439) Ohio eine Rotationsperiode von 37,4550 h abgeleitet werden.[12] Aus archivierten Daten des Asteroid Terrestrial-impact Last Alert System (ATLAS) aus dem Zeitraum 2015 bis 2018 wurde in einer Untersuchung von 2022 mit der Methode der konvexen Inversion eine Rotationsperiode von 37,469 h bestimmt.[13]

Um die Kenntnis über Rotation, Form und Größe der unter den Asteroiden vorkommenden langsamen Rotatoren zu verbessern, wurden in einem Projekt photometrische Daten gesammelt und die Lichtkurven zur Erstellung von 3D-Modellen für eine Anzahl Asteroiden benutzt. Eventuell auftretende Mehrdeutigkeiten wurden durch die Einbeziehung von Daten aus Sternbedeckungen eliminiert. Für (439) Ohio konnte in einer Untersuchung von 2023 aus Beobachtungsdaten der Jahre 1984 bis 2022 ein dreidimensionales Gestaltmodell für eine Rotationsachse mit retrograder Rotation und einer Periode von 37,46726 h berechnet werden. Das Modell passte gut zu den Beobachtungsdaten von drei Sternbedeckungen durch den Asteroiden am 27. Mai 2017, 11. März 2022 und 24. März 2022 und konnte damit zu einem mittleren Durchmesser von 74 ± 2 km skaliert werden.[14]

Siehe auch

Einzelnachweise

  1. E. F. Tedesco, P. V. Noah, M. Noah, S. D. Price: The Supplemental IRAS Minor Planet Survey. In: The Astronomical Journal. Band 123, Nr. 2, 2002, S. 1056–1085, doi:10.1086/338320 (PDF; 398 kB).
  2. J. R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, J. Dailey, P. R. M. Eisenhardt, R. S. McMillan, T. B. Spahr, M. F. Skrutskie, D. Tholen, R. G. Walker, E. L. Wright, E. DeBaun, D. Elsbury, T. Gautier IV, S. Gomillion, A. Wilkins: Main Belt Asteroids with WISE/NEOWISE. I. Preliminary Albedos and Diameters. In: The Astrophysical Journal. Band 741, Nr. 2, 2011, S. 1–20, doi:10.1088/0004-637X/741/2/68 (PDF; 73,0 MB).
  3. J. R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, C. Nugent, M. S. Cabrera: Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids. In: The Astrophysical Journal Letters. Band 759, Nr. 1, L8, 2012, S. 1–8, doi:10.1088/2041-8205/759/1/L8 (PDF; 3,27 MB).
  4. J. R. Masiero, T. Grav, A. K. Mainzer, C. R. Nugent, J. M. Bauer, R. Stevenson, S. Sonnett: Main Belt Asteroids with WISE/NEOWISE. Near-infrared Albedos. In: The Astrophysical Journal. Band 791, Nr. 2, 2014, S. 1–11, doi:10.1088/0004-637X/791/2/121 (PDF; 1,10 MB).
  5. C. R. Nugent, A. Mainzer, J. Masiero, J. Bauer, R. M. Cutri, T. Grav, E. Kramer, S. Sonnett, R. Stevenson, E. L. Wright: NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos. In: The Astrophysical Journal. Band 814, Nr. 2, 2015, S. 1–13, doi:10.1088/0004-637X/814/2/117 (PDF; 1,07 MB).
  6. C. R. Nugent, A. Mainzer, J. Bauer, R. M. Cutri, E. A. Kramer, T. Grav, J. Masiero, S. Sonnett, E. L. Wright: NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos. In: The Astronomical Journal. Band 152, Nr. 3, 2016, S. 1–12, doi:10.3847/0004-6256/152/3/63 (PDF; 1,34 MB).
  7. D. Lazzaro, C. A. Angeli, J. M. Carvano, T. Mothé-Diniz, R. Duffard, M. Florczak: S3OS2: the visible spectroscopic survey of 820 asteroids. In: Icarus. Band 172, Nr. 1, 2004, S. 179–220, doi:10.1016/j.icarus.2004.06.006 (arXiv-Preprint: PDF; 3,49 MB).
  8. C.-I. Lagerkvist, G. Hahn, P. Magnusson, H. Rickman: Physical studies of asteroids XVI: photoelectric photometry of 17 asteroids. In: Astronomy & Astrophysics Supplement Series. Band 70, 1987, S. 21–32, bibcode:1987A&AS...70...21L (PDF; 299 kB).
  9. A. Marciniak, F. Pilcher, D. Oszkiewicz, T. Santana-Ros, S. Urakawa, S. Fauvaud, P. Kankiewicz, Ł. Tychoniec, M. Fauvaud, R. Hirsch, J. Horbowicz, K. Kamiński, I. Konstanciak, E. Kosturkiewicz, M. Murawiecka, J. Nadolny, K. Nishiyama, S. Okumura, M. Polińska, F. Richard, T. Sakamoto, K. Sobkowiak, G. Stachowski, P. Trela: Against the biases in spins and shapes of asteroids. In: Planetary and Space Science. Band 118, 2015, S. 256–266, doi:10.1016/j.pss.2015.06.002 (arXiv-Preprint: PDF; 2,60 MB).
  10. J. Ďurech, J. Hanuš, V. Alí-Lagoa: Asteroid models reconstructed from the Lowell Photometric Database and WISE data. In: Astronomy & Astrophysics. Band 617, A57, 2018, S. 1–8, doi:10.1051/0004-6361/201833437 (PDF; 778 kB).
  11. J. Martikainen, K. Muinonen, A. Penttilä, A. Cellino, X. Wang: Asteroid absolute magnitudes and phase curve parameters from Gaia photometry. In: Astronomy & Astrophysics. Band 649, A98, 2021, S. 1–8, doi:10.1051/0004-6361/202039796 (PDF; 7,49 MB).
  12. E. Wilawer, D. Oszkiewicz, A. Kryszczyńska, A. Marciniak, V. Shevchenko, I. Belskaya, T. Kwiatkowski, P. Kankiewicz, J. Horbowicz, V. Kudak, P. Kulczak, V. Perig, K. Sobkowiak: Asteroid phase curves using sparse Gaia DR2 data and differential dense light curves. In: Monthly Notices of the Royal Astronomical Society. Band 513, Nr. 3, 2022, S. 3242–3251, doi:10.1093/mnras/stac1008 (PDF; 1,16 MB).
  13. J. Ďurech, M. Vávra, R. Vančo, N. Erasmus: Rotation Periods of Asteroids Determined With Bootstrap Convex Inversion From ATLAS Photometry. In: Frontiers in Astronomy and Space Sciences. Band 9, 2022, S. 1–7, doi:10.3389/fspas.2022.809771 (PDF; 1,01 MB).
  14. A. Marciniak, J. Ďurech, A. Choukroun, J. Hanuš, W. Ogłoza, R. Szakáts, L. Molnár, A. Pál, F. Monteiro, E. Frappa, W. Beisker, H. Pavlov, J. Moore, R. Adomavičienė, R. Aikawa, S. Andersson, P. Antonini, Y. Argentin, A. Asai, P. Assoignon, J. Barton, P. Baruffetti, K. L. Bath, R. Behrend, L. Benedyktowicz, L. Bernasconi, G. Biguet, M. Billiani, D. Błażewicz, R. Boninsegna, M. Borkowski, J. Bosch, S. Brazill, M. Bronikowska, A. Bruno, M. Butkiewicz-Bąk, J. Caron, G. Casalnuovo, J. J. Castellani, P. Ceravolo, M. Conjat, P. Delincak, J. Delpau, C. Demeautis, A. Demirkol, M. Dróżdż, R. Duffard, C. Durandet, D. Eisfeldt, M. Evangelista, S. Fauvaud, M. Fauvaud, M. Ferrais, M. Filipek, P. Fini, K. Fukui, B. Gährken, S. Geier, T. George, B. Goffin, J. Golonka, T. Goto, J. Grice, K. Guhl, K. Halíř, W. Hanna, M. Harman, A. Hashimoto, W. Hasubick, D. Higgins, M. Higuchi, T. Hirose, R. Hirsch, O. Hofschulz, T. Horaguchi, J. Horbowicz, M. Ida, B. Ignácz, M. Ishida, K. Isobe, E. Jehin, B. Joachimczyk, A. Jones, J. Juan, K. Kamiński, M. K. Kamińska, P. Kankiewicz, H. Kasebe, B. Kattentidt, D.-H. Kim, M.-J. Kim, K. Kitazaki, A. Klotz, M. Komraus, I. Konstanciak, R. Könyves-Tóth, K. Kouno, E. Kowald, J. Krajewski, G. Krannich, A. Kreutzer, A. Kryszczyńska, J. Kubánek, V. Kudak, F. Kugel, R. Kukita, P. Kulczak, D. Lazzaro, J. Licandro, F. Livet, P. Maley, N. Manago, J. Mánek, A. Manna, H. Matsushita, S. Meister, W. Mesquita, S. Messner, J. Michelet, J. Michimani, I. Mieczkowska, N. Morales, M. Motyliński, M. Murawiecka, J. Newman, V. Nikitin, M. Nishimura, J. Oey, D. Oszkiewicz, M. Owada, E. Pakštienė, M. Pawłowski, W. Pereira, V. Perig, J. Perła, F. Pilcher, E. Podlewska-Gaca, J. Polák, T. Polakis, M. Polińska, A. Popowicz, F. Richard, J. J Rives, T. Rodrigues, Ł. Rogiński, E. Rondón, M. Rottenborn, R. Schäfer, C. Schnabel, O. Schreurs, A. Selva, M. Simon, B. Skiff, M. Skrutskie, J. Skrzypek, K. Sobkowiak, E. Sonbas, S. Sposetti, P. Stuart, K. Szyszka, K. Terakubo, W. Thomas, P. Trela, S. Uchiyama, M. Urbanik, G. Vaudescal, R. Venable, Ha. Watanabe, Hi. Watanabe, M. Winiarski, R. Wróblewski, H. Yamamura, M. Yamashita, H. Yoshihara, M. Zawilski, P. Zelený, M. Żejmo, K. Żukowski, S. Żywica: Scaling slowly rotating asteroids with stellar occultations. In: Astronomy & Astrophysics. Band 679, A60, 2023, S. 1–43, doi:10.1051/0004-6361/202346191 (PDF; 14,1 MB).